Histone modification enzymes induced during chemical hepatocarcinogenesis.
نویسنده
چکیده
Aberrant methylation patterns of genomic DNA are well-studied epigenetic mutations in cancer. Hypermethylation of CpG islands in tumor-suppressor genes promotes oncogenesis and hypomethylation of global genomic DNA affects genomic stability. Cancer is recognized as a genetic and epigenetic disease. However, it is not clear how epigenetic regulatory factors, including histone modification enzymes, chromatin components and other factors are involved in carcinogenesis. To gain insights into the molecular mechanisms mediated by these factors at the early stage of hepatocarcinogenesis and hepatotoxicity induced by chemicals, we investigated gene expression profiles by DNA microarray and Western blot analyses. We prepared RNA and nuclear extracts from livers with hyperplastic nodules expressing Glutathione S-transferase placental form (GST-P) and compared findings with those of normal liver. GST-P is a phase II detoxification enzyme and a well-known tumor marker. We identified several epigenetic regulatory factors that showed dysregulated expression during chemically induced hepatocarcinogenesis. Here I review the characterization and functions of these factors and discuss the mechanisms of tumor marker gene expression during chemical hepatocarcinogenesis.
منابع مشابه
Methyl deficiency, alterations in global histone modifications, and carcinogenesis.
The methyl-deficient model of endogenous hepatocarcinogenesis in rodents is unique in that dietary omission rather than the addition of chemical carcinogens leads to tumor formation. Thus, the biochemical and molecular events predisposing to cancer in this model result from chronic metabolic stress and provide an ideal model system to study progressive alterations that occur during carcinogenes...
متن کاملDeregulation of Epigenetic Mechanisms by the Hepatitis B Virus X Protein in Hepatocarcinogenesis
This review focuses on the significance of deregulation of epigenetic mechanisms by the hepatitis B virus (HBV) X protein in hepatocarcinogenesis and HBV replication. Epigenetic mechanisms, DNA methylation, and specific histone modifications, e.g., trimethylation of H3 on lysine-27 or lysine-4, maintain 'cellular memory' by silencing expression of lineage-inducing factors in stem cells and conv...
متن کاملDeveloping diazirine-based chemical probes to identify histone modification 'readers' and 'erasers'.
Post translational modifications (PTMs, e.g., phosphorylation, acetylation and methylation) of histone play important roles in regulating many fundamental cellular processes such as gene transcription, DNA replication and damage repair. While 'writer' and 'eraser' enzymes modify histones by catalyzing the addition and removal of histone PTMs, 'reader' proteins recognize these modified histones ...
متن کاملHistone modifications and traditional Chinese medicinals
BACKGROUND Chromatin, residing in the nuclei of eukaryotic cells, comprises DNA and histones to make up chromosomes. Chromatin condenses to compact the chromosomes and loosens to facilitate gene transcription and DNA replication/repair. Chemical modifications to the histones mediate changes in chromatin structure. Histone-modifying enzymes are potential drug targets. How herbs affect phenotypes...
متن کاملCellular distribution of c-myc transcripts during chemical hepatocarcinogenesis in rats.
The expression of cellular myc (c-myc) was studied during early and late stages of chemical hepatocarcinogenesis in the rat using Northern blot analysis and in situ hybridization. Hepatocarcinogenesis was induced according to the resistant hepatocyte model of Solt and Farber. An uninitiated version of this model was also used to examine the expression of c-myc during proliferation and different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan
دوره 127 3 شماره
صفحات -
تاریخ انتشار 2007